Vectorize MCP Server
A Model Context Protocol (MCP) server implementation that integrates with Vectorize for advanced Vector retrieval and text extraction.
Installation
Running with npx
export VECTORIZE_ORG_ID=YOUR_ORG_ID
export VECTORIZE_TOKEN=YOUR_TOKEN
export VECTORIZE_PIPELINE_ID=YOUR_PIPELINE_ID
npx -y @vectorize-io/vectorize-mcp-server@latest
VS Code Installation
For one-click installation, click one of the install buttons below:
Manual Installation
For the quickest installation, use the one-click install buttons at the top of this section.
To install manually, add the following JSON block to your User Settings (JSON) file in VS Code. You can do this by pressing Ctrl + Shift + P and typing Preferences: Open User Settings (JSON).
{
"mcp": {
"inputs": [
{
"type": "promptString",
"id": "org_id",
"description": "Vectorize Organization ID"
},
{
"type": "promptString",
"id": "token",
"description": "Vectorize Token",
"password": true
},
{
"type": "promptString",
"id": "pipeline_id",
"description": "Vectorize Pipeline ID"
}
],
"servers": {
"vectorize": {
"command": "npx",
"args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
"env": {
"VECTORIZE_ORG_ID": "${input:org_id}",
"VECTORIZE_TOKEN": "${input:token}",
"VECTORIZE_PIPELINE_ID": "${input:pipeline_id}"
}
}
}
}
}
Optionally, you can add the following to a file called .vscode/mcp.json in your workspace to share the configuration with others:
{
"inputs": [
{
"type": "promptString",
"id": "org_id",
"description": "Vectorize Organization ID"
},
{
"type": "promptString",
"id": "token",
"description": "Vectorize Token",
"password": true
},
{
"type": "promptString",
"id": "pipeline_id",
"description": "Vectorize Pipeline ID"
}
],
"servers": {
"vectorize": {
"command": "npx",
"args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
"env": {
"VECTORIZE_ORG_ID": "${input:org_id}",
"VECTORIZE_TOKEN": "${input:token}",
"VECTORIZE_PIPELINE_ID": "${input:pipeline_id}"
}
}
}
}
Configuration on Claude/Windsurf/Cursor/Cline
{
"mcpServers": {
"vectorize": {
"command": "npx",
"args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
"env": {
"VECTORIZE_ORG_ID": "your-org-id",
"VECTORIZE_TOKEN": "your-token",
"VECTORIZE_PIPELINE_ID": "your-pipeline-id"
}
}
}
}
Tools
Retrieve documents
Perform vector search and retrieve documents (see official API):
{
"name": "retrieve",
"arguments": {
"question": "Financial health of the company",
"k": 5
}
}
Text extraction and chunking (Any file to Markdown)
Extract text from a document and chunk it into Markdown format (see official API):
{
"name": "extract",
"arguments": {
"base64document": "base64-encoded-document",
"contentType": "application/pdf"
}
}
Deep Research
Generate a Private Deep Research from your pipeline (see official API):
{
"name": "deep-research",
"arguments": {
"query": "Generate a financial status report about the company",
"webSearch": true
}
}
Development
npm install
npm run dev
Release
Change the package.json version and then:
git commit -am "x.y.z"
git tag x.y.z
git push origin
git push origin --tags
Contributing
- Fork the repository
- Create your feature branch
- Submit a pull request
Recommend MCP Servers 💡
todoist-mcp
A Model Context Protocol (MCP) server for Todoist, enabling advanced task and project management via Claude Desktop and other MCP-compatible clients.
mcp-neovim-server
An MCP server that allows Claude Desktop (or any MCP client) to control Neovim, leveraging Vim's native commands for AI text assistance.
mcp-server-monday
An MCP server for Monday.com, enabling clients to interact with Monday.com boards, items, updates, and documents.
datavis
A Model Context Protocol (MCP) server implementation that provides the LLM an interface for visualizing data using Vega-Lite syntax
@line/line-bot-mcp-server
MCP server that integrates the LINE Messaging API to connect an AI Agent to the LINE Official Account.
Scrapeless MCP Server
Scrapeless Mcp Server