AutoML
An intelligent automated machine learning platform that provides comprehensive data analysis, preprocessing, model selection, and hyperparameter tuning capabilities through Model Context Protocol (MCP) tools.
Auto ML - Automated Machine Learning Platform
An intelligent automated machine learning platform that provides comprehensive data analysis, preprocessing, model selection, and hyperparameter tuning capabilities through Model Context Protocol (MCP) tools.
🚀 Features
📊 Data Analysis & Exploration
- Data Information: Get comprehensive dataset statistics including shape, memory usage, data types, and missing values
- CSV Reading: Efficient CSV file reading with pandas and pyarrow support
- Correlation Analysis: Visualize correlation matrices for numerical and categorical variables
- Outlier Detection: Identify and visualize outliers in your datasets
🔧 Data Preprocessing
- Automated Preprocessing: Handle missing values, encode categorical variables, and scale numerical features
- Feature Engineering: Prepare features for both regression and classification problems
- Data Validation: Check for duplicates and data quality issues
🤖 Machine Learning Models
- Multiple Algorithms: Support for various ML algorithms including:
- Regression: Linear Regression, Ridge, Lasso, ElasticNet, Random Forest, XGBoost, SVR, KNN, CatBoost
- Classification: Logistic Regression, Ridge Classifier, Random Forest, XGBoost, SVM, KNN, Decision Tree, Naive Bayes, CatBoost
📈 Model Evaluation & Visualization
- Performance Metrics:
- Regression: R², MAE, MSE
- Classification: Accuracy, F1-Score
- Confusion Matrix Visualization: For classification problems
- Model Comparison: Compare multiple models side-by-side
⚙️ Hyperparameter Tuning
- Automated Tuning: Optimize model hyperparameters using advanced search algorithms
- Customizable Scoring: Choose from various evaluation metrics
- Trial Management: Control the number of optimization trials
📁 Project Structure
AutoML/
├── data/ # Sample datasets
│ ├── Ai.csv
│ ├── Calories.csv
│ ├── Cost.csv
│ ├── Digital.csv
│ ├── Electricity.csv
│ ├── ford.csv
│ ├── Habits.csv
│ ├── heart.csv
│ ├── Lifestyle.csv
│ ├── Mobiles.csv
│ ├── Personality.csv
│ ├── Salaries.csv
│ ├── Shopper.csv
│ ├── Sleep.csv
│ ├── cat.csv
│ ├── test.csv
│ └── train.csv
├── tools/
│ └── all_tools.py # MCP tool definitions
├── utils/
│ ├── before_model.py # Feature preparation
│ ├── details.py # Data information
│ ├── external_test.py # External data test with XGBoost
│ ├── feature_importance.py # Feature importance analysis
│ ├── hyperparameter.py # Hyperparameter tuning
│ ├── model_selection.py # Model selection and evaluation
│ ├── prediction.py # Prediction utilities
│ ├── preprocessing.py # Data preprocessing
│ ├── read_csv_file.py # CSV reading utilities
│ └── visualize_data.py # Visualization functions
├── main.py # Application entry point
├── server.py # MCP server configuration
├── requirements.txt # Python dependencies
└── README.md # This file
🛠️ Installation
Prerequisites
- Python 3.8 or higher
- pip or uv package manager
Setup
-
Clone the repository
git clone https://github.com/emircansoftware/AutoML.git cd AutoML -
Install dependencies
# Using pip pip install -r requirements.txt pip install uv
Using with Claude Desktop
1. Data Path Setting
In utils/read_csv_file.py, update the path variable to match your own project directory on your computer:
# Example:
path = r"C:\\\\YOUR\\\\PROJECT\\\\PATH\\\\AutoML\\\\data"
2. Claude Desktop Configuration
In Claude Desktop, add the following block to your claude_desktop_config.json file and adjust the paths to match your own system:
{
"mcpServers": {
"AutoML": {
"command": "uv",
"args": [
"--directory",
"C:\\\\YOUR\\\\PROJECT\\\\PATH\\\\AutoML",
"run",
"main.py"
]
}
}
}
You can now start your project from Claude Desktop.
📋 Dependencies
- MCP Framework:
mcp[cli]>=1.9.4- Model Context Protocol for tool integration - Data Processing:
pandas>=2.3.0,pyarrow>=20.0.0,numpy>=2.3.1 - Machine Learning:
scikit-learn>=1.3.0,xgboost>=2.0.0,lightgbm>=4.3.0 - Additional ML:
catboost(for CatBoost models)
🎯 Usage
Starting the MCP Server
from server import mcp
# Run the server
mcp.run()
Available Tools
The platform provides the following MCP tools:
Data Analysis Tools
information_about_data(file_name): Give detailed information about the datareading_csv(file_name): Read the csv filevisualize_correlation_num(file_name): Visualize the correlation matrix for numerical columnsvisualize_correlation_cat(file_name): Visualize the correlation matrix for categorical columnsvisualize_correlation_final(file_name, target_column): Visualize the correlation matrix after preprocessingvisualize_outliers(file_name): Visualize outliers in the datavisualize_outliers_final(file_name, target_column): Visualize outliers after preprocessing
Preprocessing Tools
preprocessing_data(file_name, target_column): Preprocess the data (remove outliers, fill nulls, etc.)prepare_data(file_name, target_column, problem_type): Prepare the data for models (encoding, scaling, etc.)
Model Training & Evaluation
models(problem_type, file_name, target_column): Select and evaluate models based on problem typevisualize_accuracy_matrix(file_name, target_column, problem_type): Visualize the confusion matrix for predictionsbest_model_hyperparameter(model_name, file_name, target_column, problem_type, n_trials, scoring, random_state): Tune the hyperparameters of the best modeltest_external_data(main_file_name, target_column, problem_type, test_file_name): Test external data with the best model and return predictionspredict_value(model_name, file_name, target_column, problem_type, n_trials, scoring, random_state, input): Predict the value of the target column for new inputfeature_importance_analysis(file_name, target_column, problem_type): Analyze the feature importance of the data using XGBoost
Example Workflow
# 1. Analyze your data
info = information_about_data("data/heart.csv")
# 2. Preprocess the data
preprocessed = preprocessing_data("data/heart.csv", "target")
# 3. Prepare features for classification
features = prepare_data("data/heart.csv", "target", "classification")
# 4. Train and evaluate models
results = models("classification", "data/heart.csv", "target")
# 5. Visualize results
confusion_matrix = visualize_accuracy_matrix("data/heart.csv", "target", "classification")
# 6. Optimize best model
best_model = best_model_hyperparameter("RandomForestClassifier", "data/heart.csv", "target", "classification", 100, "accuracy", 42)
📊 Sample Datasets (All CSV datasets are from Kaggle.)
The project includes various sample datasets for testing:
- heart.csv: Heart disease prediction dataset
- Salaries.csv: Salary prediction dataset
- Calories.csv: Calorie prediction dataset
- Personality.csv: Personality analysis dataset
- Digital.csv: Digital behavior dataset
- Lifestyle.csv: Lifestyle analysis dataset
- Mobiles.csv: Mobile phone dataset
- Habits.csv: Habit analysis dataset
- Sleep.csv: Sleep pattern dataset
- Cost.csv: Cost analysis dataset
- ford.csv: Ford car dataset
- Ai.csv: AI-related dataset
- cat.csv: Cat-related dataset
🔧 Configuration
Environment Variables
- Set your preferred random seed for reproducible results
- Configure MCP server settings in
server.py
Customization
- Add new ML algorithms in
utils/model_selection.py - Extend preprocessing steps in
utils/preprocessing.py - Create custom visualization functions in
utils/visualize_data.py
🤝 Contributing
We welcome contributions! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
Contributing Guidelines
- Fork the repository
- Create a feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
📝 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Model Context Protocol for the MCP framework
- scikit-learn for machine learning algorithms
- XGBoost for gradient boosting
- CatBoost for categorical boosting
- pandas for data manipulation
📞 Support
If you encounter any issues or have questions:
- Check the Issues page
- Create a new issue with detailed information
- Contact the maintainers
Recommend MCP Servers 💡
mgd1984/cursor-rules
An MCP server providing a template for Cursor Rules to offer consistent guidance for Next.js applications with TypeScript, hosted on gitmcp.io.
mcp-server-wsl-filesystem
Filesystem MCP server optimized for accessing WSL distributions from Windows using native Linux commands
gitingest-mcp
An MCP server that allows clients to quickly extract information about GitHub repositories, including summaries, project directory structure, and file content.
odmcp
Connects various open datasets to Large Language Models (LLMs) using the Model Context Protocol, enabling LLMs to access and utilize public data.
@tacticlaunch/mcp-linear
MCP server that enables AI assistants to interact with Linear project management system through natural language, allowing users to retrieve, create, and update issues, projects, and teams.
@comet-ml/opik-mcp
Model Context Protocol (MCP) implementation for Opik enabling seamless IDE integration and unified access to prompts, projects, traces, and metrics.