Chroma MCP Server
A Model Context Protocol (MCP) server implementation that provides vector database capabilities through Chroma. This server enables semantic document search, metadata filtering, and document management with persistent storage.
Requirements
- Python 3.8+
- Chroma 0.4.0+
- MCP SDK 0.1.0+
Components
Resources
The server provides document storage and retrieval through Chroma's vector database:
- Stores documents with content and metadata
- Persists data in
src/chroma/datadirectory - Supports semantic similarity search
Tools
The server implements CRUD operations and search functionality:
Document Management
-
create_document: Create a new document- Required:
document_id,content - Optional:
metadata(key-value pairs) - Returns: Success confirmation
- Error: Already exists, Invalid input
- Required:
-
read_document: Retrieve a document by ID- Required:
document_id - Returns: Document content and metadata
- Error: Not found
- Required:
-
update_document: Update an existing document- Required:
document_id,content - Optional:
metadata - Returns: Success confirmation
- Error: Not found, Invalid input
- Required:
-
delete_document: Remove a document- Required:
document_id - Returns: Success confirmation
- Error: Not found
- Required:
-
list_documents: List all documents- Optional:
limit,offset - Returns: List of documents with content and metadata
- Optional:
Search Operations
search_similar: Find semantically similar documents- Required:
query - Optional:
num_results,metadata_filter,content_filter - Returns: Ranked list of similar documents with distance scores
- Error: Invalid filter
- Required:
Features
- Semantic Search: Find documents based on meaning using Chroma's embeddings
- Metadata Filtering: Filter search results by metadata fields
- Content Filtering: Additional filtering based on document content
- Persistent Storage: Data persists in local directory between server restarts
- Error Handling: Comprehensive error handling with clear messages
- Retry Logic: Automatic retries for transient failures
Installation
- Install dependencies:
uv venv
uv sync --dev --all-extras
Configuration
Claude Desktop
Add the server configuration to your Claude Desktop config:
Windows: C:\\Users\\<username>\\AppData\\Roaming\\Claude\\claude_desktop_config.json
MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
{
"mcpServers": {
"chroma": {
"command": "uv",
"args": [
"--directory",
"C:/MCP/server/community/chroma",
"run",
"chroma"
]
}
}
}
Data Storage
The server stores data in:
- Windows:
src/chroma/data - MacOS/Linux:
src/chroma/data
Usage
- Start the server:
uv run chroma
- Use MCP tools to interact with the server:
# Create a document
create_document({
"document_id": "ml_paper1",
"content": "Convolutional neural networks improve image recognition accuracy.",
"metadata": {
"year": 2020,
"field": "computer vision",
"complexity": "advanced"
}
})
# Search similar documents
search_similar({
"query": "machine learning models",
"num_results": 2,
"metadata_filter": {
"year": 2020,
"field": "computer vision"
}
})
Error Handling
The server provides clear error messages for common scenarios:
Document already exists [id=X]Document not found [id=X]Invalid input: Missing document_id or contentInvalid filterOperation failed: [details]
Development
Testing
- Run the MCP Inspector for interactive testing:
npx @modelcontextprotocol/inspector uv --directory C:/MCP/server/community/chroma run chroma
- Use the inspector's web interface to:
- Test CRUD operations
- Verify search functionality
- Check error handling
- Monitor server logs
Building
- Update dependencies:
uv compile pyproject.toml
- Build package:
uv build
Contributing
Contributions are welcome! Please read our Contributing Guidelines for details on:
- Code style
- Testing requirements
- Pull request process
License
This project is licensed under the MIT License - see the LICENSE file for details.
Recommend MCP Servers 💡
volatility-mcp
This repo hosts an MCP server for volatility3.x. Integrates Volatility 3's memory analysis with FastAPI and the Model Context Protocol (MCP).
guyru/man-mcp-server
An MCP server that provides access to Linux man pages using FastMCP, allowing AI assistants to search and retrieve system documentation directly from your local machine.
searchAPI-mcp
A Model Context Protocol (MCP) based search API server that provides standardized access to Google Maps, Google Flights, Google Hotels, and other search services like Google, Bing, Baidu, etc., enabling AI assistants to access various search services through a unified interface.
@noditlabs/nodit-mcp-server
An MCP server enabling AI agents to interact with multi-chain blockchain data via Nodit's Web3 Data and Node APIs, providing structured context for LLMs.
@burtthecoder/mcp-virustotal
A Model Context Protocol (MCP) server for querying the VirusTotal API. Provides comprehensive security analysis tools with automatic relationship data fetching. Integrates seamlessly with MCP-compatible applications like Claude Desktop.
E2B
E2B provides a secure, open-source cloud sandbox runtime for executing AI-generated code, designed for agentic and AI use cases.